说明:机器学习m代码。主要实现机器学习中最小二乘支持向量机算法,核函数参数用PSO算法进行优化。用pso算法优化LSsvm算法参数,
说明:进化神经网络工具箱及其参考文献
说明:梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函...
说明:共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。 在各...
说明:各类算法
说明:2017数学建模必备模型大全
说明:支持向量机参数c和g的优化,用了三种方法:网格法、遗传算法、 粒子群算法,包你学会。