说明:主要是基于mtlab的程序,计算十字叉丝的在不同距离的衍射图像,应用小区域方差对比,程序简单,多抽样率信号处理,用于建立主成分分析模型,包括轨道机动仿真、初轨计算。
说明:matlab BP神经网络遗传算法优化,局部最优解 2. fitness.m为输入自变量优化适应度子函数。 3. de_code.m为输入自变量优化编解码子函数。 4. gabpEval.m为BP网络权值和阈值优化适应度子函数。 5. gadecod.m为BP网络权值和阈值优化编解...
说明:应用背景遗传算法是根据自然界生物染色体进化的数学模型。首先对种群进行初始化,对每个个体计算适应度,生产下一代。如果生成的种群达不到优化的终止条件,则按照适应度选择优良个体、父代进行交叉或变异,生成子代,然后用子代取代父代,再生成下一个子代。循环执行这一过程,直到满足优化终止条件为止。在遗传算法寻优过...
说明:matlab最优化程序包括 无约束一维极值问题 进退法 黄金分割法 斐波那契法 牛顿法基本牛顿法 全局牛顿法 割线法 抛物线法 三次插值法 可接受搜索法 Goidstein法 Wolfe.Powell法 单纯形搜索法 Powell法 最速下降法 共轭梯度法 牛顿法 修正牛顿法 拟牛顿法 信赖域法 显...
说明:洗牌的飞跃青蛙算法 (样图) 是新自然启发智能算法利用整个的更新和评价战略解决方案。求解多维函数优化问题,这一战略将会恶化的收敛速度和算法由于维度之间的干涉现象的解决方案的质量。为了克服这方面的不足,提出了基于样图的维度的维度改进。拟议的战略结合到其他维度值更新后的值的一维将贪婪地接受新的解决方案,...
说明:梯度下降是迭代法的一种,可以用于求解最小二乘问题(线性和非线性都可以)。在求解机器学习算法的模型参数,即无约束优化问题时,梯度下降(Gradient Descent)是最常采用的方法之一,另一种常用的方法是最小二乘法。在求解损失函数的最小值时,可以通过梯度下降法来一步步的迭代求解,得到最小化的损失函...
说明:Level Set方法的基本思想是将平面闭合曲线隐含地表达为二维曲面函数的水平集,即具有相同函数值的点集,通过Level Set函数曲面的进化隐含地求解曲线的运动.尽管这种转化使得问题在形式上变得复杂,但在问题的求解上带来很多优点,其最大的优点在于曲线的拓扑变化能够得到很自然的处理,而且可以获得唯一...
说明:在多目标的优化问题中,经常要分析解的收敛性和分布性,这时的多目标问题就会选择标准化测试函数,用来观察Pareto前沿,以此来观察解的分布性和收敛性,也就能分析该算法对于原多目标问题的算法有没有提升。