说明:适合于多分类问题,二分类问题。该源代码的测试数据为常用的数据Iris,测试结果显示该算法的分类正确率极高,能够达到98%。K-最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相...
说明:应用背景关键技术该算法对 松散关系;K近邻分类器,一个流行的 ;机器学习 ;分类,经常混淆技术k-均值 ;因为 ;K ;在名称。可以将近邻分类器对 得到的聚类中心;k-均值将新数据到现有的集群。这就是最近的质心分类器 ; ;或Rocchio算法。
说明:1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。 2.选出最小的前K数据个距离,这里用到选择排序法。 3.对比这前K个距离,找出K个数据中包含最多的是那个类的数据,即为待分类数据所在的类。 不通俗但严谨的规则是:
说明:模式识别基本方法matlab源代码,包括最小二乘法、SVM、神经网络、1_k近邻法、剪辑法、特征选择和特征变换。
说明:随机调制信号下的模拟ppm,部分实现了追踪测速迭代松弛算法,基于小波变换的数字水印算法matlab代码,BP神经网络的整个训练过程,语音信号的采集与处理,数字信号处理课设,包括最小二乘法、SVM、神经网络、1_k近邻法。