说明:Adaboost 算法的思想是合并多个“弱”分类器的输出以产生有效分类。其主要步骤为 :首先给出弱学习算法和样本空间(工, y) ,从样本空间中找出 m 组训练数据,每组训练数据的权重都是 1 /m。然后用弱学习算法迭代运算 T 次,每次运算后都按照分类结果更新训练数据权重分布,对于分类失败的训练个...
说明:backstepping方法设计例子,对于初学者为不错的样例,我本人就是通过这些练习起来的。
说明:用matlab自编的的变步长LMS滤波的算法的程序,希望对大家有用。
说明:关于多普勒锐化的一些很好的资料,希望对大家有帮助。
说明:采用贝叶斯正则化算法提高 BP 网络的推广能力。我们采用两种训练方法,即 L-M 优化算法
说明:采用贝叶斯正则化算法提高BP网络的推广能力。在本例中,将采用两种训练方法,即L-M优化算法(trainlm)和贝叶斯正则化算法(trainbr),用以训练BP网络,使其能够拟合某一附加有白噪声的正弦样本数据。