说明:模式识别的聚类方法:C-均值算法,求得不同的分类
说明:matlab实现一些基础的模式识别工作,如贝叶斯分类,聚类算法,bp神经网络
说明:通过引入折衷加权模糊因子和核度量,提出了一种改进的模糊C均值(FCM)图像分割算法。折衷加权模糊因子同时依赖于所有相邻像素的空间距离和它们的灰度差。利用该因子,新算法可以准确估计相邻像素的阻尼程度。为了进一步增强其对噪声和离群点的鲁棒性,我们在其目标函数中引入了核距离测度。该算法根据采集数据点的距离...
说明:用模糊c均值算法实现100数分为两类,实现的数据是数不是图像。
说明:模糊聚类是一种重要数据分析和建模的无监督方法.在FCM算法中,考虑到样本矢量中各维特征对模式分类的不同影响,本文提出一种优化特征加权的模糊聚类算法,该算法利用主成分分析法提取主要特征向量并根据其对方差的贡献率不同赋予相应权重进行聚类分析.
说明:基于模糊C-均值聚类算法的图像分割,消除二值分割的非此即彼的缺陷。
说明:模糊c-均值聚类算法 fuzzy c-means algorithm (FCMA)。在众多模糊聚类算法中,模糊C-均值( FCM) 算法应用最广泛且较成功,它通过优化目标函数得到每个样本点对所有类中心的隶属度,从而决定样本点的类属以达到自动对样本数据进行分类的目的。