说明: KNN 算法其实简单的说就是“物以类聚”,也就是将新的没有被分类的点分类为周围的点中大多数属于的类。它采用测量不同特征值之间的距离方法进行分类,思想很简单:如果一个样本的特征空间中最为临近(欧式距离进行判断)的K个点大都属于某一个类,那么该样本就属于这个类。这就是物以类聚的思想。
说明:适合于多分类问题,二分类问题。该源代码的测试数据为常用的数据Iris,测试结果显示该算法的分类正确率极高,能够达到98%。K-最近邻(k-Nearest Neighbour,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相...
说明:基于WLAN的室内指纹定位算法仿真分析,包括KNN法,NN法,贝叶斯算法,模糊聚类法等,实验中建立模拟数据库,为验证定位算法性能的实验阶段做准备。采用MATLAB软件进行仿真各种算法的定位结果,并通过改变参数和环境噪声,对各种定位算法及其改进算法的性能进行比较分析。
说明:应用背景你得到的分类器函数求值函数- -非常重要--其他代码是瞎扯淡* T,这是真正的交易,我已经用过很多次股票交易,债券,期货,等参数(对于分类侧):一个包含每个类的特征值的单元格数组。即,F { 1 }是第一 矩阵的大小numofdimensions X numofsamples;类,等。测试:...
说明:KNN-KSR方法是一种不直接建立自变量与因变量间数学关系去预测因变量的方法。该方法基于以下两个假设:(1)在所选择的样本描述指标信息足够完备时,性质越相似的样本在同类指标间的空间分布越接近,否则其空间距离也越大;(2)如果两类指标间存在较大关联度,则样本分别在两类指标内的空间分布也具有较大相似性。...
说明:数据采用PCA降维后进行kmeans聚类确定样本类别,对聚类后数据作图,包括数据点以及质心位置, 随后进行样本集划分,利用knn算法进行有监督的学习分类,经测试,能够取得较好的分类效果。