说明:扩展kalmanfilter(也称为线性化卡尔曼滤波): 是一个简单的非线性近似滤波算法,指运动或观测方程不是线性的情况。 无迹kalman滤波(UKF) KF和EKF都是都将问题转化为线性高斯模型,所以可以直接解出贝叶斯递推公式中的解析形式,方便运算。但对于非线性问题...
说明:在声学事件检测中, 采用基于短时能量和短时过零率的端点检测方法和基于动态时间规整算法的情况下, 对鸟叫声、 人说话声和车辆驶过声这三类声学事件进行检测。 在不加噪声的情况下, 基于时域特征的识别准确率是88.89%, 基于频域的识别准确率是83.33%, 基于时频域特征的识别准确率是77.78%。 ...
说明:2017年研究生数学建模竞赛B题参考资料【大合集】
说明:通过将极限学习机(ELM)和稀疏表示(SRC)结合到统一框架中,所提出的混合分类器不仅具有快速测试(ELM的优点)的优点,而且显示出显着的分类精度(SRC的优点)。测试它的AR面部识别,它达到95%的高精度,比ELM(91%)和SRC(93.5%)更好。ELM和SRC之间的桥梁是ELM错误分类度量和...
说明:无迹卡尔曼滤波UKF摒弃了对非线性函数进行线性化的传统做法,采用卡尔曼线性滤波框架,对于一步预测方程,使用无迹变换UT来处理均值和协方差的非线性传递问题。UKF算法是对非线性函数的概率密度分布进行近似,用一系列确定样本来逼近状态的后验概率密度,而不是对非线性函数进行近似,不需要对Jacobian矩阵...