说明:近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效。有代表性的多目标优化算法主要有NSGA、NSGA-II、SPEA、SPEA2、PAES和PESA等。粒子群优化(PSO)算法是一种模拟社会行为的、基于群体智能的进化技术,以其独特的搜索机理、出色的收敛性能、方便...
说明:KNN-KSR方法是一种不直接建立自变量与因变量间数学关系去预测因变量的方法。该方法基于以下两个假设:(1)在所选择的样本描述指标信息足够完备时,性质越相似的样本在同类指标间的空间分布越接近,否则其空间距离也越大;(2)如果两类指标间存在较大关联度,则样本分别在两类指标内的空间分布也具有较大相似性。...
说明:遗传算法雷达目标matlab遗传算法雷达目标matlab遗传算法雷达目标matlab遗传算法雷达目标matlab遗传算法雷达目标matlab遗传算法雷达目标matlab
说明:适合学习多目标优化算法的好例子,完美运行,粒子群算法 多目标优化是在现实各个领域中都普遍存在的问题,每个目标不可能都同时达到最优,必须各有权重。但是,究竟要怎样分配这样的权重,这已经成为人们研究的热点问题。同时,根据生物进化论发展起来的遗传算法,也得到了人们的关注。将这两者结合起来,能够利...
说明:多目标优化遗传算法matlab程序多目标优化遗传算法matlab程序多目标优化遗传算法matlab程序多目标优化遗传算法matlab程序多目标优化遗传算法matlab程序
说明:解决微电网多目标经济调度问题,其中包含了三个目标函数,各个目标可适当修改,采用的求解算法是改进的多目标粒子群算法,已调试运行通过
说明:NSGA-Ⅱ是目前最流行的多目标进化算法之一,它降低了非劣排序遗传算法的复杂性,具有运行速度快,解集的收敛性好的优点,成为其他多目标优化算法性能的基准。NSGA-Ⅱ算法采用了快速非支配排序算法,计算复杂度比 NSGA 大大的降低
说明:DE 算法主要用于求解连续变量的全局优化问题,其主要工作步骤与其他进化算法基本一致,主要包括变异(Mutation)、交叉(Crossover)、选择(Selection)三种操作。算法的基本思想是从某一随机产生的初始群体开始,利用从种群中随机选取的两个个体的差向量作为第三个个体的随机变化源,将差向...
说明:该附件包括详细的理论说明和源程序。主要包括:情景假设,Kalman滤波原理介绍,问题分析,初始化,仿真计算与结果。 目标跟踪问题的应用背景是雷达数据处理,即雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。本文...