说明:这是一个有关parzen窗估计的代码,用来估计概率密度函数,在模式识别中有很多重要的地位~~
说明:parzen窗法,功能是根据样本进行概率密度函数估计。实现了对正态分布概率密度函数和均匀分布双峰概密函数进行估计
说明:统计学课件
说明:无迹卡尔曼滤波UKF摒弃了对非线性函数进行线性化的传统做法,采用卡尔曼线性滤波框架,对于一步预测方程,使用无迹变换UT来处理均值和协方差的非线性传递问题。UKF算法是对非线性函数的概率密度分布进行近似,用一系列确定样本来逼近状态的后验概率密度,而不是对非线性函数进行近似,不需要对Jacobian矩阵...
说明:用parzen窗方法,估计概率密度,采用高期核函数。。。。
说明:对于一个两类分类问题,当n=100时候,用mvnrnd()函数随机产生两类样本;每一类的样本容量不小于100;2)设计最大似然估计算法对两类类条件概率密度函数进行估计;3)设计非参数估计算法对两类的类条件概率密度进行估计(任选Parzen窗法或kn-近邻法之一),并分析样本数量、窗宽、k等因素对概率...