说明:粒子群优化( PSO) 算法是一种基于群智能方法的演化计算技术,通过粒子间的相互作用发现复杂搜索空间中的最优区域,优势在于简单容易实现而且功能强大。
说明: 对于学习RBF的同学来说,K均值聚类算法是非常有用的,虽然MATLAB以及其他的软件里面都有对应的函数,但是对于想要学好人工智能的同学来说是远远不够的,要追其根源才能理解透彻。这样以后用起来才会得心应手,现在的刨根问底是为以后的快速学习带来方便。
说明:多传感器数据融合形成于上世纪80年代,目前已成为研究的热点。它不同于一般信号处理,也不同于单个或多个传感器的监测和测量,而是对基于多个传感器测量结果基础上的更高层次的综合决策过程。 多传感器数据融合比单一传感器信息有如下优点,即容错性、互补性、实时性、经济性,所以逐步得到推广应用。应用领域除...
说明: 粒子群算法(PSO)属于群智能算法的一种,是通过模拟鸟群捕食行为设计的。假设区域里就只有一块食物(即通常优化问题中所讲的最优解),鸟群的任务是找到这个食物源。鸟群在整个搜寻的过程中,通过相互传递各自的信息,让其他的鸟知道自己的位置,通过这样的协作,来判断自己找到的是不是最优解,同时也将最优解的信息...