说明:1 基于遗传算法的TSP算法(王辉) 2 基于遗传算法和非线性规划的函数寻优算法(史峰) 3 基于遗传算法的BP神经网络优化算法(王辉) 4 设菲尔德大学的MATLAB遗传算法工具箱(王辉) 5 基于遗传算法的LQR控制优化算法(胡斐) 6 遗传算法工具箱详解及应用(胡...
说明:将约束离散优化(CDO)转化为非线性约束非负整数规划(CNIP),该算法采用了种群混沌初始化、双方案变异、离散差分进化等多种改进措施,可求解非线性约束非负整数规划(CNIP),以及具有随机扰动的积分算子。针对非线性约束,给出了连续映射基惩罚的计算方法和基函数的公式,并在此基础上提出了处理约束的自适应...
说明:遗传算法是计算数学中用于解决最佳化的搜索算法,是进化算法的一种。进化算法最初是借鉴了进化生物学中的一些现象而发展起来的,这些现象包括遗传、突变、自然选择以及杂交等。遗传算法通常实现方式为一种计算机模拟。对于一个最优化问题,一定数量的候选解(称为个体)的抽象表示(称为染色体)的种群向更好的解进化。传统...
说明:NSGA-II算法提出了快速非支配排序法,降低了算法的计算复杂度。由原来的O(MN3)降到O(MN2)(M为目标函数个数,N为种群大小)。提出了拥挤度和拥挤度比较算子,代替了需要指定共享半径的适应度共享策略,并在快速排序后的同级比较中作为胜出标准,使准Pareto域中的个体能扩展到整个Pareto域...
说明:仅供学习参考使用, NSGA2主要是对NSGA算法的改进。NSGA是N. Srinivas 和 K. Deb在1995年发表的一篇名为《Multiobjective function optimization using nondominated sorting genetic algori...
说明:近年来,基于启发式的多目标优化技术得到了很大的发展,研究表明该技术比经典方法更实用和高效。有代表性的多目标优化算法主要有NSGA、NSGA-II、SPEA、SPEA2、PAES和PESA等。粒子群优化(PSO)算法是一种模拟社会行为的、基于群体智能的进化技术,以其独特的搜索机理、出色的收敛性能、方便...