说明:在机器学习中,随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。该算法代码实现了基于随机森林模型的分类问题。
说明:数据采用PCA降维后进行kmeans聚类确定样本类别,对聚类后数据作图,包括数据点以及质心位置, 随后进行样本集划分,利用knn算法进行有监督的学习分类,经测试,能够取得较好的分类效果。
说明:1.计算待分类数据和不同类中每一个数据的距离(欧氏或马氏)。 2.选出最小的前K数据个距离,这里用到选择排序法。 3.对比这前K个距离,找出K个数据中包含最多的是那个类的数据,即为待分类数据所在的类。 不通俗但严谨的规则是:
说明:南京大学计算机学院周志华团队的改进的可以处理多分类问题的Rescaling算法,并分别基于阈值移动法、采样法和样本加权法实现代价敏感,使其可以处理多分类问题下的代价密囊分类问题。
说明:随机森林是一个包含多个决策树的分类器, 并且其输出的类别是由个别树输出的类别的众数而定。 Leo Breiman和Adele Cutler发展出推论出随机森林的算法。可用于数据分类和显现回归的一个相当不错的算法,可实现很多功能。这个算法只需要将所需文件放入一个matlab路径中即可实现
说明:采用SVM支持向量机,对5种故障进行分类诊断,程序可实现判断故障是否发生,并发生的故障类型进行诊断,根据故障数据分析故障类型,相比于传统神经网络算法具有更强的小样本数据分类能力。
说明:matlab实现了五类灰色关联度模型的计算,对HARQ系统的吞吐量分析,能量谱分析计算,用MATLAB实现动态聚类或迭代自组织数据分析,在MATLAB中求图像纹理特征,用蒙特卡洛模拟的方法计算美式期权的价格以及基本描述。
说明:若要解决多类问题纠错输出编码结合 Adaboost prouve 其鲁棒性,以处理这些问题。作为编码矩阵 M * N 定义、 被 M 是班级,数目,N 是弱分类器的数目。每一行表示为类码字。矩阵是用 OneVsOne 方法,编码和解码海明距离。Adaboost 被定义为促进弱分类器。
说明:BP-Adaboost模型即把BP神经网络作为弱分类器,反复训练BP神经网络预测样本输出,通过Adaboost算法得到多个BP神经网络弱分类器组成的强分类器。